(M)  s i s t e m a   o p e r a c i o n a l   m a g n u x   l i n u x ~/ · documentação · suporte · sobre

  Next Previous Contents

6. Extended filesystems (Ext, Ext2, Ext3)

Extended filesystem (ext fs), second extended filesystem (ext2fs) and third extended filesystem (ext3fs) were designed and implemented on Linux by Rémy Card, Laboratoire MASI--Institut Blaise Pascal, < card@masi.ibp.fr>, Theodore Ts'o, Massachussets Institute of Technology, < tytso@mit.edu> and Stephen Tweedie, University of Edinburgh, < sct@redhat.com>

6.1 Extended filesystem (ExtFS)

This is old filesystem used in early Linux systems.

6.2 Second Extended Filesystem (Ext2 FS)

The Second Extended File System is probably the most widely used filesystem in the Linux community. It provides standard Unix file semantics and advanced features. Moreover, thanks to the optimizations included in the kernel code, it is robust and offers excellent performance.

Since Ext2fs has been designed with evolution in mind, it contains hooks that can be used to add new features. Some people are working on extensions to the current filesystem: access control lists conforming to the Posix semantics, undelete, and on-the-fly file compression.

Ext2fs was first developed and integrated in the Linux kernel and is now actively being ported to other operating systems. An Ext2fs server running on top of the GNU Hurd has been implemented. People are also working on an Ext2fs port in the LITES server, running on top of the Mach microkernel and in the VSTa operating system. Last, but not least, Ext2fs is an important part of the Masix operating system, currently under development by one of the authors.

Motivations

The Second Extended File System has been designed and implemented to fix some problems present in the first Extended File System. Our goal was to provide a powerful filesystem, which implements Unix file semantics and offers advanced features.

Of course, we wanted to Ext2fs to have excellent performance. We also wanted to provide a very robust filesystem in order to reduce the risk of data loss in intensive use. Last, but not least, Ext2fs had to include provision for extensions to allow users to benefit from new features without reformatting their filesystem.

``Standard'' Ext2fs features

The Ext2fs supports standard Unix file types: regular files, directories, device special files and symbolic links.

Ext2fs is able to manage filesystems created on really big partitions. While the original kernel code restricted the maximal filesystem size to 2 GB, recent work in the VFS layer have raised this limit to 4 TB. Thus, it is now possible to use big disks without the need of creating many partitions.

Ext2fs provides long file names. It uses variable length directory entries. The maximal file name size is 255 characters. This limit could be extended to 1012 if needed.

Ext2fs reserves some blocks for the super user (root). Normally, 5% of the blocks are reserved. This allows the administrator to recover easily from situations where user processes fill up filesystems.

``Advanced'' Ext2fs features

In addition to the standard Unix features, Ext2fs supports some extensions which are not usually present in Unix filesystems.

File attributes allow the users to modify the kernel behavior when acting on a set of files. One can set attributes on a file or on a directory. In the later case, new files created in the directory inherit these attributes.

BSD or System V Release 4 semantics can be selected at mount time. A mount option allows the administrator to choose the file creation semantics. On a filesystem mounted with BSD semantics, files are created with the same group id as their parent directory. System V semantics are a bit more complex: if a directory has the setgid bit set, new files inherit the group id of the directory and subdirectories inherit the group id and the setgid bit; in the other case, files and subdirectories are created with the primary group id of the calling process.

BSD-like synchronous updates can be used in Ext2fs. A mount option allows the administrator to request that metadata (inodes, bitmap blocks, indirect blocks and directory blocks) be written synchronously on the disk when they are modified. This can be useful to maintain a strict metadata consistency but this leads to poor performances. Actually, this feature is not normally used, since in addition to the performance loss associated with using synchronous updates of the metadata, it can cause corruption in the user data which will not be flagged by the filesystem checker.

Ext2fs allows the administrator to choose the logical block size when creating the filesystem. Block sizes can typically be 1024, 2048 and 4096 bytes. Using big block sizes can speed up I/O since fewer I/O requests, and thus fewer disk head seeks, need to be done to access a file. On the other hand, big blocks waste more disk space: on the average, the last block allocated to a file is only half full, so as blocks get bigger, more space is wasted in the last block of each file. In addition, most of the advantages of larger block sizes are obtained by Ext2 filesystem's preallocation techniques.

Ext2fs implements fast symbolic links. A fast symbolic link does not use any data block on the filesystem. The target name is not stored in a data block but in the inode itself. This policy can save some disk space (no data block needs to be allocated) and speeds up link operations (there is no need to read a data block when accessing such a link). Of course, the space available in the inode is limited so not every link can be implemented as a fast symbolic link. The maximal size of the target name in a fast symbolic link is 60 characters. We plan to extend this scheme to small files in the near future.

Ext2fs keeps track of the filesystem state. A special field in the superblock is used by the kernel code to indicate the status of the file system. When a filesystem is mounted in read/write mode, its state is set to ``Not Clean''. When it is unmounted or remounted in read-only mode, its state is reset to ``Clean''. At boot time, the filesystem checker uses this information to decide if a filesystem must be checked. The kernel code also records errors in this field. When an inconsistency is detected by the kernel code, the filesystem is marked as ``Erroneous''. The filesystem checker tests this to force the check of the filesystem regardless of its apparently clean state.

Always skipping filesystem checks may sometimes be dangerous, so Ext2fs provides two ways to force checks at regular intervals. A mount counter is maintained in the superblock. Each time the filesystem is mounted in read/write mode, this counter is incremented. When it reaches a maximal value (also recorded in the superblock), the filesystem checker forces the check even if the filesystem is ``Clean''. A last check time and a maximal check interval are also maintained in the superblock. These two fields allow the administrator to request periodical checks. When the maximal check interval has been reached, the checker ignores the filesystem state and forces a filesystem check.

An attribute allows the users to request secure deletion on files. When such a file is deleted, random data is written in the disk blocks previously allocated to the file. This prevents malicious people from gaining access to the previous content of the file by using a disk editor.

Last, new types of files inspired from the 4.4 BSD filesystem have recently been added to Ext2fs. Immutable files can only be read: nobody can write or delete them. This can be used to protect sensitive configuration files. Append-only files can be opened in write mode but data is always appended at the end of the file. Like immutable files, they cannot be deleted or renamed. This is especially useful for log files which can only grow.

Physical Structure

The physical structure of Ext2 filesystems has been strongly influenced by the layout of the BSD filesystem. A filesystem is made up of block groups. Block groups are analogous to BSD FFS's cylinder groups. However, block groups are not tied to the physical layout of the blocks on the disk, since modern drives tend to be optimized for sequential access and hide their physical geometry to the operating system.

,---------+---------+---------+---------+---------,
| Boot    | Block   | Block   |   ...   | Block   |
| sector  | group 1 | group 2 |         | group n |
`---------+---------+---------+---------+---------'

Each block group contains a redundant copy of crucial filesystem control informations (superblock and the filesystem descriptors) and also contains a part of the filesystem (a block bitmap, an inode bitmap, a piece of the inode table, and data blocks). The structure of a block group is represented in this table:

,---------+---------+---------+---------+---------+---------,
| Super   | FS      | Block   | Inode   | Inode   | Data    |
| block   | desc.   | bitmap  | bitmap  | table   | blocks  |
`---------+---------+---------+---------+---------+---------'

Using block groups is a big win in terms of reliability: since the control structures are replicated in each block group, it is easy to recover from a filesystem where the superblock has been corrupted. This structure also helps to get good performances: by reducing the distance between the inode table and the data blocks, it is possible to reduce the disk head seeks during I/O on files.

In Ext2fs, directories are managed as linked lists of variable length entries. Each entry contains the inode number, the entry length, the file name and its length. By using variable length entries, it is possible to implement long file names without wasting disk space in directories.

Performance optimizations

In Linux, the Ext2fs kernel code contains many performance optimizations, which tend to improve I/O speed when reading and writing files.

Ext2fs takes advantage of the buffer cache management by performing readaheads: when a block has to be read, the kernel code requests the I/O on several contiguous blocks. This way, it tries to ensure that the next block to read will already be loaded into the buffer cache. Readaheads are normally performed during sequential reads on files and Ext2fs extends them to directory reads, either explicit reads (readdir(2) calls) or implicit ones (namei kernel directory lookup).

Ext2fs also contains many allocation optimizations. Block groups are used to cluster together related inodes and data: the kernel code always tries to allocate data blocks for a file in the same group as its inode. This is intended to reduce the disk head seeks made when the kernel reads an inode and its data blocks.

When writing data to a file, Ext2fs preallocates up to 8 adjacent blocks when allocating a new block. Preallocation hit rates are around 75% even on very full filesystems. This preallocation achieves good write performances under heavy load. It also allows contiguous blocks to be allocated to files, thus it speeds up the future sequential reads.

These two allocation optimizations produce a very good locality of:

  • related files through block groups
  • related blocks through the 8 bits clustering of block allocations.

6.3 Third Extended Filesystem (Ext3 FS)

Ext3 support the same features as Ext2, but includes also Journaling. You can download pre- version from ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/.

6.4 E2compr - Ext2fs transparent compression

Implements `chattr +c' for the ext2 filesystem. Software consists of a patch to the linux kernel, and patched versions of various software (principally e2fsprogs i.e. e2fsck and friends). Although some people have been relying on it for years, THIS SOFTWARE IS STILL IN DEVELOPMENT, AND IS NOT ,END-USER`-READY.

6.5 Accessing Ext2 from DOS (Ext2 tools)

A collection of DOS programs that allow you to read a Linux ext2 file system from DOS.

6.6 Accessing Ext2 from DOS, Windows 9x/NT and other Unixes (LTools)

The LTOOLS are under DOS/Windows 3.x/Windows 9x/Windows NT or non-Linux-UNIX, what the MTOOLS are under Linux. You can access (read, write, modify) your Linux files when running one of the other operating systems. The kernel of the LTOOLS is a set of command line programs. Additionally a JAVA program as a stand alone graphical user interface is available. Alternatively, you can use your standard web browser as a graphical user interface. The LTOOLS do not only provide access to Linux files on your own machine, but also remote access to files on other machines.

6.7 Accessing Ext2 from OS/2

EXT2-OS2 is a package that allows OS/2 to seamlessly access Linux ext2 formatted partitions from OS/2 as if they were standard OS/2 drive letters. The ultimate aim of this package is to be able to use the ext2 file system as a replacement of FAT or HPFS. For the moment the only lacking feature to achieve this goal is the support for OS/2 extended attributes.

6.8 Accessing Ext2 from Windows 95/98 (FSDEXT2)

6.9 Accessing Ext2 from Windows 95 (Explore2fs)

A user space application which can read and write the second extended file system ext2. Supports hard disks and removable media, including zip and floppy. Uses a windows explorer like interface to show files and details. Supports Drag& Drop, context menus etc. Written for Windows NT, but has some support for Windows 95. Large disks can cause problems.

6.10 Accessing Ext2 from Windows NT (ext2fsnt)

6.11 Accessing Ext2 from BeOS

This is a driver to allow BeOS to mount the Linux Ext2 filesystem. The version that is currently released author consider pretty stable. People have been using it for a long time, with no bug reports.

Authow now works for Be Inc, so you will not see his ext2 and NTFS filesystem support updated on the web much more. The drivers will be pulled into future BeOS releases.

6.12 Accessing Ext2 from MacOS (MountX)

MacOS driver which allows you to mount ext2 filesystems (Linux and MkLinux) on the Macintosh.

6.13 Accessing Ext2 from MiNT

This is a full working Ext2 filesystem driver for FreeMiNT. It can read and write the actual ext2 version as implemented in Linux for example. The partition size is not limited and the logical sector size can be 1024, 2048 or 4096 bytes. The only restriction is that the physical sector size is smaller or equal to the logical sector size. The blocksize can be configured if you initialize the partition with mke2fs.

6.14 Ext2fs defrag

Defragments your ext2 filesystem. Needs updated for glib libraries.

6.15 Ext2fs resize

Resizes second extended filesystem.

6.16 Ext2end

For use with LVM Consists of 2 utilites. ext2endable reorganises an empty ext2 file systems to allow them to be extended, and ext2end that extends an unmounted ext2 file system. If ext2endable has not been run when the file system was created ext2end will only be able to extend it to the next multiple of 256MB

6.17 Repairing/analyzing/creating Ext2 using E2fsprogs

The ext2fsprogs package contains essential ext2 filesystem utilities which consists of e2fsck, mke2fs, debugfs, dumpe2fs, tune2fs, and most of the other core ext2 filesystem utilities.

6.18 Ext2 filesystem editor - Ext2ed

EXT2ED is a disk editor for the extended2 filesystem. It will show you the ext2 filesystem structures in a nice and intuitive way, letting you easily "travel" between them and making the necessary modifications.

6.19 Linux filesystem editor - lde

This allows you to view some Linux fs's, hex block and inode editing are now supported and you can use it to dump an erased file to another partition with a little bit of work. Supports ext2, minix, and xiafs. Includes LaTeX Introduction to the Minix fs. You must patch sources to compile on 2.2.x and 2.3.x kernels beacuse of missing Xia header files in kernel.

6.20 Ext2 undelete utilities

This is a patch for kernel 2.0.30 that adds undelete capabilities using the "undeletable" attribute provided by the ext2fs. This patch include man pages, the undelete daemon and utilities. Check our web page for the latest and greatest version.


Next Previous Contents